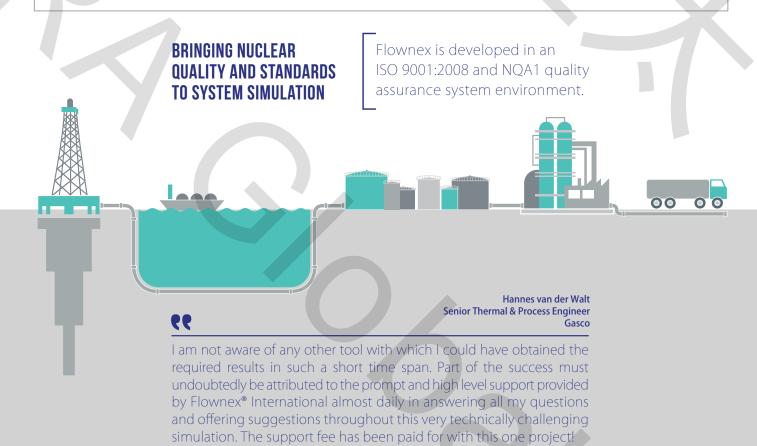


Flownex® SE determines pressure drop [flow] and heat transfer [temperature] for the connected components of a complete system in steady state and transient, e.g. pumps or compressors, pipes, valves, tanks and heat exchangers.

## ANALYSIS

- Simulation.
- Performance assessment.
- Modification assessment.
- Fault root cause assessment.


# **TYPICAL USES:**

# DESIGN

- System sizing.
- Component sizing.
- Determining operating ranges.
- Flow, temperature, pressure, power consumption, etc.
- Testing of control philosophy.

# TRAINING

- System behavior examination.
- Performing basic flow and heat transfer calculations.
- Thermohydraulic principles and properties referencing.



# STEAM SYSTEMS

### **FEED WATER**

Root cause analysis of pump NPSH problems. Analysis of feed water heater tube breaks. Cavitation/phase change detection.

### **COOLING WATER CIRCUITS**

Flow balancing.

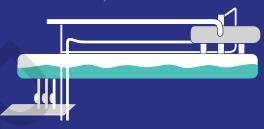
Pump and pipe sizing.

Energy optimization.

Heat load calculations.

Heat exchanger sizing.

Water reticulation system design.


Water hammer analysis and prevention.

Environment - cooling tower - plant matching.

### NATURAL CIRCULATION BOILERS

Calculation of recirculation rate and steam production.

Prediction of dry out.



### SUPER HEATER AND MAIN STEAM PIPING

Calculation of metal temperatures and change rates.

Commissioning assistance. Pipe sizing.

### STEAM TURBINE & SUPPORTING SYSTEMS

- Start-up and shutdown simulation.

Turbine trip control simulation.

Cland steam system analysis

Ciaria stearn system arialysis.

Lubrication system analysis.

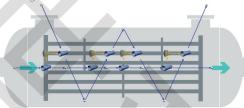
### ONCE-THROUGH BOILERS

Flow balancing.

Assessment of boiling stability.

Calculation of flow/boiling regimes.

Assessment of control.


# DRILLING MUD PUMPING SYSTEMS FOR OIL WELLS

Calculation of Non-Newtonian fluid pressure drop. Balancing of flow in branching pipe networks. Assessment of pressure pulse transients.

# HEAT EXCHANGERS

Calculating heat transfer and pressure drop for various geometries: finned tube, shell and tube, tube-in-tube, plate heat exchangers.

- Calculating the heating or cooling requirement for various processes: evaporation, condensation or temperature control.
- Calculation of natural circulation evaporators' recirculation rate.
- Simulation of transient behavior for startup, shut-down or process upset conditions.
- Calculation of temperatures and boiling pressure drop.
  Calculation of metal temperature change rates during transients.



# FIRE PROTECTION

SYSTEMS

Pump, pipe and tank sizing. Sizing of nozzles and orifices. Flow balancing.

# OID HANDLING SYSTEMS

- Calculation of pressure drop for gases or liquids.
- Pump and pipeline sizing.
- Pump performance adjustment for viscosity.
- Sizing of control valves and orifices.
- Design of liquid distribution systems.
- Flow balancing in branching networks.
- Analysis of transient events like pressure wave (water hammer/ surge) propagation.
- Control philosophy development and testing using the built-in PLC function block diagrams.
- Sizing of pressure safety valves.
- Simulation of a valve failure event.
- Calculation of heating or cooling requirements for various processes.
- Heat loss/pickup calculations.
- Insulation sizing.





