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Editorial

In numerical simulations, abstract physical models are 
used to understand existing phenomena, to validate sys-
tems and to improve their designs. For the application of 
these models, for example, within a complex three-dimen-
sional FE-simulation, the question often arises how the 
corresponding model parameters are to be chosen. Simple 
models allow parameters to be determined directly from 
experiments. In more complex models, such as for damage 
or material behavior, most phenomena can be only validat-
ed by analyzing a large number of parameters. Moreover, 
in many cases, it is not possible to decouple the infl uence 
of single parameters in order to identify them directly by 
appropriate tests. 

For such tasks, in the fi eld of engineering, inverse strate-
gies are generated by using simulation models which cor-
respond to the existing experimental geometry, constraints 
and test procedure. The unknown parameters are then de-
termined by an iterative calibration between experimental 
data and simulation results.

During this calibration procedure, the identifi cation of sen-
sitive parameters plays a crucial part to avoid misleading 
values. Especially only parameters that have a signifi cant 
impact on output variables can be identifi ed and should 
therefore be selected for further steps of the calibration. 
Using optiSLang and methods of sensitivity analysis, these 
parameters can be determined effi ciently. After the iden-
tifi cation of a suitable set of input parameters and result 
variables, a successful model calibration can be conducted 
by using global and local optimization methods such as 
gradient-based or adaptive response surfaces as well as 
evolutionary and genetic procedures. 

The analysis of the signifi cance and sensitivity of the input 
parameters in the calibration process also reveals opportu-
nities for system and product optimization. This approach 
is also suitable for the analysis and validation of non-lin-
ear system behavior. The methods can be used multidisci-
plinary and can be integrated in the virtual development 
process of all industrial fi elds. 

In the title story of this issue, the application of optiSLang 
for parameter identifi cation and model calibration as a spe-
cial optimization task with signals will be introduced and 
illustrated by practical examples. 

Apart from that, we again have selected case studies and 
customer stories about CAE-based Robust Design Optimi-
zation (RDO) applied in different industries. 

I hope you will enjoy reading our magazine.

Yours sincerely

Johannes Will
Managing Director DYNARDO GmbH

Weimar, November 2014
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Methods of sensitivity analysis and optimization with optiSLang can be used to improve a system design by 
understanding and validating its characteristic signal responses. 

CALIBRATION OF FIELD DATA AND SIMULATION 
AS AN OPTIMIZATION TASK WITH SIGNALS

TITLE STORY // MODEL CALIBRATION

Introduction
Signals are characteristic system responses that are critical 
in helping to understand, validate and improve the physi-
cal model of the system, as well as the system design itself 
by understanding the important parameters. Here, calibra-
tion means using fi eld observations and simulation runs in 
order to estimate simulation model parameters or to up-
date the uncertainty regarding these parameters. This can 
be formulated as an optimization task where the output 
parameters are signals and the target function is, for ex-
ample, the sum of the square deviations of the signal from 
the testing and the signal from the simulation. The opti-
mization task of identifying the right input parameters can 
then be formulated, for instance, to minimize the value of 
the target function by selecting the appropriate values for 
the input parameters. A simple example, however, shows 
that this can lead to a non-unique solution for the input 
parameters. Therefore, additional boundary conditions for 
the calibration can be very useful.

Knowing from the calibration the signifi cance and sensitiv-
ity of input parameters, further optimization can be used 
to improve the system or product design. With the informa-

tion from the calibration, the design space can be adapted 
and appropriate surrogate models can be used that also re-
spect nonlinear system behaviour. 

In the case of strong scattering of test and/or simulation 
results, the identifi cation task must be enhanced by sto-
chastic analysis as the fi t of single signals by design vari-
ables are no longer suffi cient. Then, a parameter space has 
to be used where the input variables also have stochastic 
elements, like a stochastic distribution.

The technique of identifying the input parameters within 
an optimization task for the calibration of fi eld data in-
cluding measured signals and signals generated from the 
simulation can be used across all industries where virtual 
prototyping is important. 

This article will give a fi rst introduction and discusses some 
methods and measures used for sensitivity analysis and op-
timizations. The parameter identifi cation as a special opti-
mization task will be also shown by using two theoretical 
examples followed by three industrial applications. One of 
them will be explained in detail.

Model Validation and Calibration with the Pa-
rameter Identifi cation as an Optimization Task
Optimization using numerical simulations can, in general, be 
classifi ed into two different categories: the fi rst category is as-
sociated with the target to improve the functionalities of the 
product and the second category is to test and improve the 
model to more appropriately fi t with the reality (Fig. 0).

While optimization has been already in wide spread usage 
for the improvement of product functionalities, the poten-
tial for the usage of similar optimization techniques to im-
prove the quality of the model, typically with parameteriza-
tion and calibration, is often not exploited. 

The workfl ows that are used for the calibration of a model 
are similar to those used for the improvement of function-
alities of the product. In both cases, it is recommended to 
start with a sensitivity analysis, especially when handling 
with a large number of parameters. A sensitivity analysis 
is used to study which input parameters have signifi cant 
importance for which output parameters. These studies 
are also used to establish a meta model that approximates 
the output parameters as functions of the input param-
eters. This step can help to reduce the design space to the 
important parameters. For the criteria of importance of 
parameters and quality of the meta model, different sta-
tistical measures have been established. It is important 
that these meta models also include nonlinear dependen-
cies of the parameters and that the prognosis quality is 
quantifi ed. For the quantifi cation of the quality of prog-
nosis of such a model, the Coeffi cient of Prognosis, CoP, is 
introduced. With these CoPs, a nonlinear meta model can 
be selected that provides not only the best fi t for the data 
but also the best model with respect to the ability for the 
best prognosis. Trying to only provide a model that best fi ts 
the data can lead easily to an overfi tting and incapability 
of explaining further data. The model, based on the best 
CoPs, is the Metamodel of Optimal Prognosis, MOP. A typi-
cal workfl ow for the optimization of product functionalities 
is shown in Fig. 1. After the defi nition of the Design Space 

X (the parameterization) and during the design of experi-
ment (DOE), designs with different input parameters Xi are 
created. These different designs are solved, generating the 
values for the output parameter Yi. These data samples can 
be used to establish the MOP, that can signifi cantly reduce 
the design space to the important variables Xred, including 
nonlinear dependencies. Also, from the sensitivity analysis 

a suffi cient initial parameter set X0 is selected for optimiza-
tion. Here, it is necessary to defi ne at least one optimization 
function f(Xi). Several optimization methods are available 
like gradient based, adaptive response surface, or evolu-
tionary and genetic methods. Finally, an optimized set of 
input parameters Xopt is found.   

The workfl ow for the calibration can be similar. A difference to 
the measurements, i.e. the sum of squared deviations of mea-
sured and calculated data for the corresponding time steps, 
is used as an optimization function. The identifi ed parameter 
set is then the optimized set of input parameters Xopt.

Two theoretical examples
There are not many optimization tools available that can 
handle different fi eld measurements, i.e. time series for a 
pressure. Also, in general, they do not have the ability to 
include signals effi ciently from the real test environment 
which is necessary for the target function of optimization. 
This is one of the main reasons that the potential of using 
optimization for parameter identifi cation has not yet been 
fully exploited.  

During the development of such a simulation model, the 
parameterization is the key to ensure its realistic behavior.
The fi rst example is a simple damped harmonic oscillator. 
This can be used to understand how signals can be handled. 
The example also illustrates that different optimization 
runs can lead to quite different parameter values. This is 
due to the fact that the solution can be realized with differ-
ent values of the input parameters.

Fig. 0: Model calibration and improvement of product funtionalities Fig. 1: A typical workfl ow for an optimization, starting with a sensitivity analy-

sis for selecting the important parameters, followed by the optimization
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The basic input parameters for the calibration of the 
damped oscillator are the mass m, the initial kinetic energy 
Ekin, the damping c and the stiffness k (Fig. 2).

The reference signal is taken from the displacement x over 
time for some parameters that are unknown in this exam-
ple (Fig.3, red curve).

Equations for the damped oscillator:

Analytic solution for the displacement:

Undamped eigen-frequency ω0:

Lehr’s damping ratio D:

Damped eigen-frequency ω:

The target for the optimization is to identify input param-
eters that generate a signal very close to the reference sig-
nal. Therefore, the objective function is the sum of squared 
differences between the displacement of the reference x* 
and the displacement of the calculated solution x at n dis-
crete time steps. Signals are generally discretized due to the 
measurement.

The sensitivity study for this case shows that all input vari-
ables are signifi cant. Thus, all signals from the designs of the 
design of experiment were processed during the sensitivity 
study. Illustrating the solutions for all these initial param-
eters, as shown in Fig. 4, often already provides an under-
standing of interesting frequency ranges for real world ap-
plications. Furthermore, some information are given about 
the feasibility of the parameter identifi cation itself.

Running different optimizations lead to different sets of ini-
tial parameters as shown in Fig. 5.

Here, despite the different values for the parameters, both 
optimization runs lead to suffi cient results showing only 
small differences compared to the reference signal (Fig. 6).

This non-unique solution for the identifi ed parameters is 
due to the fact that the parameters Ekin and m, as well as m 
and k appear only pairwise in the solution for the displace-
ment. It is only their ratio that matters for the solution. 

Therefore, a unique solution can be generated by having, 
for example, a constant mass value for the optimization. 
This example is shown in more detail also for training pur-
poses with signals in an optiSLang tutorial available from 
Dynardo and currently included in the software delivery. 
The second example is a simplifi ed CFD test model where 
a reference vector of the 12 outfl ow velocities exists. The 
optimization task is to fi nd the set of 10 input parameters 
for the pressures (Press_1 … Press_10) that come close to 
the outfl ow velocities (Fig.7).

The optimization function to minimize, similar to the sig-
nal function for the damped harmonic oscillator case, is the 
squared deviation of the reference velocities Ref_Velo_i and 
the velocities Out_Velo_i from the calculated solution:

Also, in this case it is important to have additional con-
straints. It was chosen that each output parameter is close 
enough within 10% of the corresponding reference output 
parameter:

Fig. 2: Damped harmonic oscillator

Fig. 3: The reference signal and the signal calculated from the initial values

Fig. 5: Two different optimizations lead to rather different identifi ed param-

eter values

Fig. 6: The identifi ed parameter values from both optimizations lead to a suf-

fi cient approximation of the reference signal

Fig. 7: A CFD example of a box with two obstacles

Fig. 4: The reference signal together with all signals from the sensitivity analysis
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This problem was solved with optiSLang inside of ANSYS 
Workbench. The complete workfl ow is shown in Fig. 8. The 
solution was found with an Adaptive Response Surface 
Method. In general, this method is recommended for a 
small number of continuous input paramaters (Fig. 9).

Practical Applications
The fi eld of practical applications for model calibration by 
parameter identifi cation cover a broad range. Some publica-
tions are available from the online library of Dynardo, show-
ing applications from different industrial areas like civil en-
gineering (Zabel and Brehm, 2008), automotive (Will, 2006) 
and oil & gas (Will, 2010). In this article, the focus will only be 
on two applications with signals, some progresses we have 
made for an NVH automotive application and a new model 
calibration for a nuclear waste depository analysis.

Calibration and Optimization of Driving Comfort Behaviour
In product development of luxury cars, Noise Vibration 
Harshness (NVH) plays a very important role. Driver, co-pilot 
and passenger on the back seats should feel very comfort-
able during any driving conditions. Therefore, the calibra-
tion of virtual models to available test data and the reduc-
tion of noise levels inside the car cabin is an important task 
of the virtual prototyping. For the formulation of a success-
ful calibration design space as well as a successful objective 
function, two challenges need to be met. First, a very large 

number of variables may have an infl uence on the passen-
ger car air vibration. Second, the frequency signals show a 
very large number of vibration modes. As a result, the se-
lection of the main infl uencing parameters and the signal 
processing to extract response values which belong to one 
vibration mode are a very important part of the calibration 
process. In the example, we start with a variation space of 
485 sheet metal thicknesses of all body parts which might 
have an infl uence. Fig. 10 shows the variation of one of the 
sound pressure signals of 200 Latin Hypercube samples of 
the sensitivity analysis (Fig. 10).

Having the signal variation window, the frequency window 
was defi ned to extract the peak sound values which corre-
spond to the vibration mode of interest. Note that because 
of stiffness variation, the frequency and the sound value 
are varying at the same time and we need to adjust the ex-
traction windows to avoid mode switch of important vibra-
tion modes within one extraction window.

Unfortunately, the CoPs for the variation of the peak sound 
level are below 30%, which indicate that only the impor-

tant variables for less than 30% of the total variation were 
identifi ed. It is our experience for this kind of identifi cation 
task, that increasing of sampling to 300 or 400 designs or 
alternative extraction windows does not increase the CoP 
levels signifi cantly. The main reason for the small CoP levels 
is that the pressure sound levels are infl uenced by mecha-
nisms of 10 to 20 variables. To identify these mechanisms 
out of 500 variables, a very large number of sample points 
will be necessary (Fig. 11).

Therefore, the CoP values from the fi rst sensitivity analy-
sis were used to reduce the design space manually. Those 
37 variables were selected which showed signifi cant CoPs 
for any of the response values of interest and repeated the 
sensitivity study in the reduced design space. At the second 
sensitivity study using 37 variables, the variation interval 
of the peak value within the frequency window 110 to 140 
Hz is 80% compared to the fi rst sensitivity study using 485 
variables. That approved the CoP based selection of impor-
tant parameters. In the reduced space, higher CoP values 
of the full model are close to 40% and higher CoP values of 
single variables are identifi ed (Fig.12).

Within the reduced design space of 37 important variables, 
the main contributors could also be identifi ed for the other 
important frequencies and positions. Furthermore, the cali-
bration to the reference signal was performed successfully. 
Of course, after having a model which shows suffi cient fore-
cast quality to measurements, the next step in the virtual pro-
totyping will be the optimization. Here, the minimization of 
peak sound pressure levels is shown in Fig. 13 (see next page).

Calibration of a Nuclear Waste Depository Model
During the research for the safeness of nuclear waste depos-
itories, heating experiments are performed in underground 
laboratories in order to understand the thermal-hydraulic-
mechanical (T-H-M) interactions. In these experiments, the 
change due to the heat energy input over time of tempera-
ture, pore water pressure and stress fi elds are measured. 

Fig. 8: The ANSYS Workbench set up with optiSLang inside ANSYS Workbench for the CFD example of a box with two obstacles Fig. 10: Variation of sound level, green – reference, black – 200 samples of 

the sensitivity analysis

Fig. 11: CoP value of the peak sound level in the frequency window 110 to 

140 Hz, sensitivity study using 485 variables

Fig. 12: CoP values of the peak sound level in the frequency window 110 to 

140 Hz, sensitivity study using 37 variables

Fig. 9: Reference solution (top), initial solution (middle) and optimized so-

lution (bottom) showing the velocity vectors colored by velocity magnitude
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The DBE TECHNOLOGIE GmbH develops, in cooperation 
with the Dynardo GmbH, simulation models that are able 
to comprehend these interactions in claystone. An impor-
tant component of these developments is the calibration 
of the models with respect to the results of the measure-
ments. The heating experiment has been simulated with 
a T-H-M coupled 3-dimensional fi nite element analysis 
with ANSYS and multiPlas. Therefore, special routines from 
the poro-elasticity theory, thermal-hydraulic coupling and 
thermal-mechanical coupling in isotropic and anisotropic 
claystone formations were developed and implemented in 
ANSYS. For the sensitivity analysis and for the parameter 
identifi cation, optiSLang was used. Due to the complexity 
of the T-H-M phenomena, about 30 model parameters were 

used. In this case, it was essential for the successful calibra-
tion of measurement and simulation to use the powerful 
algorithms and fi lter strategies for large parameter spaces 
of optiSLang and the achieved short calculation times due 
to effi cient numerical algorithms of ANSYS with multiPlas.
In the sensitivity analysis, the material parameters (includ-
ing parameters for the coupling) have been varied within 
physical possible boundaries. 

From the experiment temperature and pore water pressure 
data are available for 17 measurement points during the 
heating, as well as before the heating. Due to uncertain-
ties in the process before the heating, the calibration and 
parameter identifi cation was restricted to the heating pro-
cess itself. For the evaluation of the sensitivities, the rela-
tive pore water pressures discrete time values were used. 
By the selection of these output values, statements became 
possible for the sensitivity at the beginning and at the end 
of the heating, as well as for the time when the pore pres-
sure reached the maximum.

The total Coeffi cients of Prognosis (CoP) show high values 
of above 85% (Fig. 14). This underlines that the physical 
phenomena are very well explainable through the identi-

fi ed correlations and also indicates that the correct impor-
tant parameters for establishing the model were used. 

By comparison of the scatter range of the calculated sig-
nals with the signals from the measurement (Fig. 15), state-
ments about the quality of the model and the possible cali-
bration of the model with the measurement are possible. 
If the scatter range of the calculated values is surrounding 
the measured values, then a successful calibration within 
the selected boundaries of the parameters can be possible. 
The fi gure shows that this is possible from the start of the 
heating experiment (t=0).

For the parameter identifi cation, the optimization selected 
a set of input parameters leading to a good approximation 
of the measured signals of the temperature and the pore 
water pressure over time. Parameters that only showed a 
negligible sensitivity have not been varied through the op-
timization for the parameter identifi cation. They have been 
set to their reference values. 

The comparison of the measured and calculated time sig-
nals of temperature and pore water pressure (s. fi gure 16) 
shows that with the identifi ed parameter for the model the 
physical phenomena could be simulated very plausibly and 
a very good calibration with temperature and pore water 
pressure was reached.

Outlook
This article explained, using theoretical and practical cases, 
how the calibration of a model with parameter identifi ca-
tion can be treated as an optimization problem including 
signals. These techniques will become most probably an 
important standard technology for the development of 
more accurate models for the simulation. 

In the following article we present a more detailed example for 
model calibration and parameter identifi cation where also the 
varying infl uences of the parameters for the different stages 
of an experiment are analyzed. Additionally, in this example, 
the parallel coordinate plot of optiSLang is used to understand 
which parameters are really good identifi able.

Author // Roland Niemeier (Dynardo GmbH)
Source // www.dynardo.de/en/library

presented at the NAFEMS World Congress 2013, 
www.nafems.org

Fig. 13: Overview of the process for an optimization using the same sensi-

tivity study but selecting only the eight most important variables for the 

optimization (by courtesy of  DAIMLER AG)

Fig. 14: High CoPs are an indicator for the suffi cient quality of the model

Fig. 15: Pore water pressure at measurement point TED1253, as a signal over 

time, compared with the simulated signals of the sensitivity analysis

Fig. 16: Comparison of measurement vs. simulation at measurement point TED1252 after parameter identifi cation. Top left: temperature over time, bottom left: 

total pore water pressure, right: relative water pressure for the three phases of heating.
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Example: Identifi cation of concrete fracture 
parameters from a wedge splitting test 

The following example will explain the basic procedure using a 

wedge splitting test regarding Trunk [Trunk1999]. During this ex-

periment, a pre-slotted specimen was loaded vertically along a 

predefi ned crack edge. With this setup, the experimental measure-

ment of the post-cracking behavior was possible. 

The simulation model represents the specimen as a linear elastic con-

tinuum containing 2D plane-stress elements. The theoretical crack 

evolution was represented by 2D interface elements, whereby the soft-

ening behavior was modeled using a common bilinear softening law. 

The tensile strength f
t
 and the specifi c fracture energy G

f
 as well as the 

two shape parameters 
ft
 and 

wc
 describing the kink of the bilinear 

curve, serve as fracture parameters. The simulation was conducted 

path-controlled causing a steadily increased crack opening width.

In the fi rst step, a sensitivity analysis was performed. Here, the Young’s 

modulus E, the Poisson’s ratio and the four fraction parameters were 

varied. As a design-of-experiment-scheme, a correlation-optimized 

Latin Hypercube Sampling was used. The simulation curves were 

calculated and imported in optiSLang via a signal module for each 

of the 100 samples. The curves showed a good adoption of the esti-

mated range of values according to the reference signals (Fig. 3). An 

identifi cation with the estimated parameter ranges was possible. 

Furthermore, the infl uence of the model parameters on the response 

variables was analyzed using the Metamodel of Optimal Prognosis. 

Fig. 4 shows the meta-model and Fig. 5 the parameter infl uence con-

cerning the sum squared errors. It can be seen that the Poisson’s ratio 

and one of the form parameters most likely cause no effect. However, 

the approximation quality was not satisfying and less important fac-

tors were not identifi ed due to insuffi cient sampling points. To ensure 

that only parameters without infl uence were excluded from the 

identifi cation, effects appearing during the softening process were 

analyzed more detailed. The loads at the reference points (Fig. 2) 

were extracted from the signals of the simulation model and, for 

each value, a sensitivity analysis was conducted. This could be done 

without any further simulation runs because the additional scalar 

values were just extracted from the calculated response signals. 

The displacement dependent sensitivity indices are shown in Fig. 

6. It illustrates that the Poisson’s ratio had no infl uence. Apart from 

that, all parameters caused at least a partial effect during the sim-

ulation. The conclusion can be drawn that all parameters except 

the Poisson’s ratio were identifi able from the measurement data. 

The next step was the conduction of a global optimization using an 

Evolutionary Algorithm with the 10 best designs of the sensitivity 

study as a start population. This improved the convergence of the 

optimization process signifi cantly. The best design was then used 

as a start design for a local optimization. For the local search, the 

Simplex-Nelder-Mead method was used (Fig. 7). Finally, the issue 

of ambiguity was verifi ed in detail. For this purpose, the designs of 

the local optimization were depicted as a parallel coordinates plot. 

The range of the sum of squared errors was restricted. Thus, only 

simulation curves with a very similar course were shown. In refer-

ence to the accompanying parameter ranges, it was illustrated that 

the modulus of elasticity, the tensile strength as well as the frac-

ture energy show very small intervals and were suffi ciently identi-

fi able. The two shape parameters showed very similar result dia-

grams applied with a larger deviation margin. Therefore, they were 

not suffi ciently identifi able from using the available measurement 

points. Here, the consideration of further experimental data would 

certainly improve the validity.

Author // Thomas Most (Dynardo GmbH)

Source // www.dynardo.de/en/library

[Trunk 1999] Trunk, B., “Einfl uss der Bauteilgrösse auf die Bruchenergie von Beton”, 

Dissertation, Eidgenössische Technische Hochschule, Zürich, 1999

Fig. 1: Wedge splitting test regarding Trunk, experimental setup and measured load dis-

placement curves for different specimen 

Fig. 3: The range of 100 simulation curves from the Latin Hypercube Sampling covers the 

reference signal from the measurements suffi ciently. 
Fig. 5: Variance-based sensitivity indices of the parameters to be identifi ed (right)

Fig. 8: Optimized simulation curves and optimal parameters showing a very good correla-

tion between measurement and simulation

Fig. 6: Sensitivity indices for all input parameters depending on the crack opening width

Fig. 7: Flow chart of identifi cation: the sensitivity analysis generated the DoE designs as well 

as a response surface model using the Metamodel of Optimal Prognosis. For global search, the 

best designs served as a start population for the Evolutionary Algorithm. The resulting best 

design was then used as the starting point of the local search using simplex Nelder-Mead.

Fig. 9: Parallel coordinate plot of the best optimization designs for all considered material pa-

rameters and the sum of the least squares.

Fig. 2: 2D simulation model (top left) with stress history vertical to the crack surface, 

bilinear softening model (top right) and simulative load-crack opening curve (bottom) 

Fig. 4: Approximation of the sum of squared errors using Moving Least Squares
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ANSYS and optiSLang provide a new approach to turbomachinery design by applying numerical simulation and 
optimization based on objective and reproducible methods. 

AN INTEGRATED APPROACH FOR OPTIMIZING 
TURBOMACHINERY DESIGNS

CASE STUDY // TURBOMACHINERY

Introduction
Turbomachinery design today primarily relies on the intu-
ition of experienced designers to determine which angle 
needs to be modifi ed to improve the design. A new integrat-
ed approach to turbomachinery design based on objective 
and reproducible methods will be introduced in this article. 
It is intended for engineers and require neither mathemati-
cal expertise nor many years of experience to be applied. 
This optimization method is capable of scanning the entire 
design space in order to survey it completely and to identify 
local optimums. By this initial step, an algorithm generates 
more detailed simulations which represent the optimal so-
lution with a high level of accuracy.

Challenges in turbomachinery design 
There are many variables involved in turbomachinery de-
sign, each causing a complex effect on the fi nal product 
performance. Today’s most common design methods start 
with a one-dimensional analysis and include engineering 
experience to obtain an initial design having a reasonable 
effi ciency level of approximately eighty fi ve percent. The 
next step is usually a computational fl uid dynamics (CFD) 

simulation. This provides a more detailed look at the fl ow 
velocity as well as direction and pressure conditions. It also 
identifi es issues such as recirculation which cannot be de-
tected with one-dimensional analysis. However, to run such 
a simulation takes normally a considerable amount of time 
and each run provides diagnostic information about just 
one design iteration.

Experienced turbomachinery designers can review CFD 
simulation results and make educated guesses about which 
design modifi cation might be possible to generate a signifi -
cant improvement of product performance. Such design-
ers are capable of increasing effi ciency up to almost ninety 
percent. However, there are just a few engineers having the 
experience needed to intuitively understand which param-
eters need to be changed to improve the design.

Even these experts are rarely capable of achieving a 90%+ 
effi ciency level which can be found in today’s best-in-class 
designs. Attaining this level requires a much more sophis-
ticated analytical process. By using CFD, hundreds or even 
thousands of potential designs can be analyzed automati-

cally. Even with the latest computing hardware, it is still a 
challenge to deal with the large amount of computing time 
and resources required to conduct such simulations. Con-
sequently, turbomachinery designers want to address this 
challenge with optimization algorithms that reduce the 
number of simulation runs required to explore the design 
space and to identify the best designs. There are many dif-
ferent optimization algorithms delivered as black box appli-
cations which often require considerable mathematical ex-
pertise to operate. These algorithms can also fail to fi nd an 
optimal solution because of limitations in their capacities.

Due to the complexity of turbomachinery development, pa-
rameters leading to optimal solutions are often located in 
spaces surrounded by relatively ineffi cient designs. There-
fore, optimization algorithms that push effi ciency towards 
higher levels often fail to identify the optimal solution, be-
cause, while avoiding surrounding low-effi ciency designs, 
they tend to shift temporarily towards design spaces of 
reduced effi ciency.

Another fact making turbomachinery development com-
plicated is that the structural design process must be per-
formed simultaneously in order to ensure the design will 
be able to handle the resulting loads. Typically, design and 
structural engineers work in different departments with 
different tools. Both frequently make design modifi cations. 
This might create the risk that the two groups work on dif-
ferent fi les causing extra expenses and delays in the down-
stream process. 

Integrated approach 
This article will demonstrate an integrated approach for op-
timizing the design of a centrifugal compressor while en-
suring suffi cient robustness towards manufacturing varia-
tions. The design geometry, including the blades and hub 
body, was defi ned in ANSYS BladeModeler, which is fully 
integrated into the ANSYS Workbench environment. The 
design was defi ned in a number of 2-D sketches, either at 
span-wise positions or at arbitrary user-defi ned positions. 
Thus, a full 3-D design was interactively generated pro-
viding quantitative information such as blade angles and 
throat area.

In this application, the geometry of the blades was defi ned 
by the meridian fl ow path consisting of two parametric 
sketches, one for the hub and another for the shroud. The 
location of the leading and trailing edges for the rotor, as 
well as the return guide vane, were defi ned based on the 
meridian plane. Angle and thickness distribution of the hub 
and shroud layer defi ned the shape of the blades. There 
were a total of 17 input parameters, as shown in Fig. 1b.

Fig. 1a: Parametric geometry

Fig. 1b: Input parameters
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Computational fl uid dynamics
A key advantage of the integrated approach is that both the 
fl ow and the structural groups work with the same design ge-
ometry within the ANSYS Workbench environment. This saves 
a considerable amount of time by eliminating the need for 
sending modifi cations back and forth to enter them into the 
model. The integration also includes the structural simulation, 
as well as the fl ow simulation, into the optimization process. 
Thus, for example, the optimization can be confi gured to se-
lect the design with the highest effi ciency while also consider-
ing specifi c static and dynamic mechanical properties.

Based on the mesh resolution defi ned by the user, ANSYS Tur-
boGrid was used to automatically generate the mesh for the 
computational fl uid dynamics (CFD) simulation. The model 
included one passage per component with a profi le-transfor-
mation rotor-stator interface as well as with chronological 
periodic interfaces. The total pressure and temperature were 
defi ned at the inlet, while the mass fl ow rate was defi ned 
at the outlet. Assuming an ideal gas, ANSYS CFX was then 
used to solve the model. The output parameters, such as to-
tal pressure, temperature ratio and isentropic or polytrophic 
effi ciency were determined using CFX-Post. Fig. 2 shows typi-
cal simulation results. The transient rotor–stator capability 
resolved the true transient interaction between components 
in regard to maximum accuracy. It can be applied to individ-

Sensitivity analysis
With the fl ow and structural models set up, the next step 
was to automatically simulate the minimum number of de-
sign points needed to map out the complete design space. 
Thus, not only the design meeting the spec, but also those 
providing the highest possible level of performance while 
meeting other constraints, could be confi dently identi-
fi ed. The software tool optiSLang was used for sensitivity 
analysis, optimization, robustness evaluation and reliability 
analysis. The optiSLang inside ANSYS Workbench integra-
tion runs simulations by importing parameters automati-
cally, thus, no additional user input is required.

A sensitivity analysis uses a designed experiment to evalu-
ate the reliability of the numerical model and identifi es 
the most important input parameters. The Metamodel of 
Optimal Prognosis (MOP) algorithm uses Latin Hypercube 
Sampling to scan the multidimensional space of the input 
parameters. A Latin Hypercube is an n-dimensional object 
representing n different analyzed design parameters where 
each sample is the only one in its axis-aligned hyperplane. 
In this case, there were about 50 design parameters and 
about 100 design points were solved in order to create the 
MOP. This model represented the original physical problem 
and enables analyses of various design confi gurations with-
out any further simulation runs.

ual pairs of blade passages or to the entire 360-degree ma-
chine. Setup and use was as simple as it had been with the 
other frame-change models. It was also possible to combine 
transient and steady-state frame change interfaces in one 
computation. This was complemented by the inclusion of 
the second-order time differencing, which provided greater 
transient accuracy. Furthermore, transient blade row (Time- 
and Fourier transformation) models allowed unequal pitch 
systems to simulate multi-rows using only a few blade pas-
sages and less than the full 360-degree geometry.

Structural analysis
The mechanical model used one segment of the rotor with 
cyclic symmetry reducing computational time without any 
loss of numerical accuracy. The model was fi xed at the inner 
radius. The rotor was loaded by centrifugal force and fl uid 
pressure using results of the CFD simulation. Data handling 
and fl uid-structure coupling were automatically performed 
in ANSYS Workbench, as shown in Fig. 3. After the comple-
tion of the static simulation, a pre-stressed modal analysis 
was performed. The results of the mechanical simulation 
included the maximal displacement, von Mises stress and 
the eigenfrequencies. The design requirements included 
an upper limit of those stress and eigenvalues that did not 
match the rotational velocity in order to avoid resonance.

The integration platform optiSLang inside ANSYS Work-
bench provides a seamless data transfer between applica-
tions and process controllers that sequentially simulate all 
of the design points and collate the outputs. Parametric 
persistence makes it possible to automate the optimization 
process including fi le transfer, mapping between physics, 
boundary conditions, etc. When the user clicks the Update 
All Design Points button, the fi rst design point, containing 
the fi rst set of parameter values, is sent to the parameter 
manager of ANSYS Workbench. There, the design modifi ca-
tions are processed from the CAD system to post-process-
ing. The new design point is simulated and output results 
are passed to the design point table where they are stored. 
The process continues until all design points are solved and 
the design space is defi ned for later optimization.

optiSLang’s Coeffi cient of Prognosis (CoP) determines wheth-
er the metamodel is reliable or not. This calculation also de-
termines which input parameters have a strong infl uence 
on the outputs. The response surface graphically depicts the 
infl uence of the relevant parameters on the system’s perfor-
mance and shows where the highest effi ciency is located. 
Fig. 4 shows the CoP and the response surface. In this case, 
the CoP was 84%, which indicated that the model was ad-
missible but still could be optimized. The sensitivity analy-
sis generated an effi ciency of above 89% based on relatively 
rough simulations run parallel on a computing network over-
night. This is about the maximum level that a highly experi-
enced designer could expect to achieve within a reasonable 
time period.

The sensitivity analysis also showed that the eight most 
signifi cant parameters account for nearly all result varia-
tions. This information was used to decisively reduce the 
time required for the detailed simulation by eliminating the 

Fig. 4a: Coeffi cient of Prognosis (CoP) 

Fig. 2: CFD simulation results

Fig. 3a: Mechanical displacement 

Fig. 3b: Mechanical stress 
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variables that do not appear to have a signifi cant impact on 
the results. For verifi cation, the engineer can also check the 
numeric model, such as by examining the upper and lower 
bounds of the design parameters.

Design optimization
With the entire design space examined and the most 
promising region selected, the next step was running a 
more detailed simulation. optiSLang’s optimizer provides 
a wide selection of algorithms. In this case, the sensitivity 
analysis showed that the practical designs were located in 
a relatively small area of the design space. The Adaptive 
Response Surface Method (ARSM) was selected because of 
its effi ciency to generate optimal solution based on start-
ing points that are already in the vicinity of the optimum. If 
the sensitivity analysis had shown many design space areas 
containing practical designs, it would have been necessary 
to choose a different algorithm.

The direct optimization with ARSM generated another 1.5% 
improvement in the effi ciency level to 90.62%, which is 
truly a best-in-class result. This level of effi ciency is beyond 
what could be reached by using manual methods regard-
less of the designer’s experience. With ARSM, approx. 10 

shown in Fig. 5. Controlling this parameter will have a ma-
jor impact on pressure distribution. It was also worth not-
ing that the pressure ratio was tilted towards the lower 
limit. Shifting the distribution in the direction of the higher 
limit will signifi cantly reduce the proportion outside the 
limits. The other design parameters caused negligible ef-
fects which means there might be potential for opening up 
manufacturing tolerances in order to reduce costs.

Conclusion
By using the multi-physics platforms ANSYS Workbench and 
optiSLang, an automated process can be applied to achieve 
robust design optimization with reproducible methods. The 
process provides automatic geometry regeneration, high-
quality meshing for each possible design, automatic solver 
execution as well as automatic post-processing. Robust de-
sign optimization makes the virtual development process 
more sophisticated, for example by including the impact 
of manufacturing variations. The results can be seen in im-
proved product performance and Robustness. 

Author // Johannes Einzinger (ANSYS Germany GmbH)
Source // www.dynardo.de/en/library

simulations can be run parallel resulting in a required time 
of about three days. Using all parameters, a second opti-
mization was performed with an Evolutionary Algorithm 
(EA) as a contol point to check whether the elimination of 
design parameters in the fi rst optimization was appropri-
ate or not. The EA simulation hardly provided any further 
improvement, confi rming that the additional input param-
eters have a negligible effect on the results. 

Robustness evaluation
So far, the simulation dealt with an idealized setting where, 
according to the CAD geometry for example a 50 degrees 
angle is assumed to be exactly 50 degrees. In real world 
manufacturing, of course, one blade will have an angle of 
50.1, the next 49.9 and so on. All of the other design pa-
rameters, including material properties, also vary. In order 
to determine the effect of this variance, we need to design 
a probability distribution that will simulate the real world 
manufacturing output. A Gaussian distribution is often 
used to model manufacturing tolerances while a log nor-
mal or Weibull distribution is common for material prop-
erties. Again, a Latin Hypercube sampling distribution was 
used because of its effi cient ability to estimate the outputs 
of a large number of possible designs based on a small sam-
ple of actual simulations. 

The robustness analysis results showed that an estimated 
13% of the manufacturing volume had a pressure ratio out-
side the limits. The CoP was 83 percent, which indicated 
that the results are reliable. The robustness analysis indi-
cated that the fl uctuation of pressure was primarily caused 
by the rotational velocity, the so called myomega variable 

Fig. 4b: Response surface 

Fig. 5a: CoP of myomega variable

Fig. 5b: Robustness evaluation of pressure ratio

Table 1: design optimization

Initial SA ARSM EA 

Pressure Ratio 1.3456 1.3497 1.3479 1.3485

Effi ciency [%] 86.72 89.15 90.62 90.67

# Simulations - 100 105 84
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ANSYS and optiSLang were applied to optimize the geometry of different antenna types concerning resonance, 
interference and impedance behavior.

HIGH FREQUENCY SIMULATION

CUSTOMER STORY // ELECTRICAL ENGINEERING

High frequency electromagnetics is concerned with the 
propagation of waves. In free space, electromagnetic exci-
tations propagate with 300,000 km/s, the speed of light. For 
this reason, a specifi c wave length can be associated with 
a certain electromagnetic wave of a given frequency. For 
example, in a vacuum, the wave length at 1 GHz is 30 cm. 
Wave phenomena are only relevant if the considered struc-
ture has a size which is comparable to the wave length. For 
typical radio frequency (RF) applications, this implies that 
high frequency starts at the MHz to GHz range.

There are many high frequency applications in daily life. 
Most of them are concerned with the transfer and process-
ing of information. However, there are also applications in 
radar technology, in medical imaging applications, as well 
as in microwave heating.

Field and circuit simulation
Electromagnetic waves, like radio waves, can propagate freely 
in space. But they can also be bound to conductors or wave-
guides as in coaxial cables or on micro strip lines. An antenna 
is a passive device that converts guided into free waves or 

vice versa. However, in the designing process of printed cir-
cuit boards or connectors, the goal is to prevent the signal 
from scattering off imperfections which would cause un-
desirable effects like refl ections, cross talk or radiated emis-
sions. In order to deal with such issues, ANSYS developed the 
Electromagnetics Suite containing industry standard fi eld 
and circuit simulators. In this article, a special focus is placed 
on ANSYS HFSS as an all-purpose, three dimensional high 
frequency fi eld simulator. This fully parametric simulation 
environment combined with automatic adaptive meshing 
can be used for robust design optimization of RF systems. 
The adaptive meshing process ensures the desired solution 
accuracy for any required result, like impedances or scatter-
ing parameters. In this way Ansys HFSS eliminates numerical 
noise due to the meshing process.

Most RF applications use effects like resonance, interference 
and matching of impedances as functioning principles: 
1. For example, an antenna operating at resonance gener-

ates large currents on its structure while it is driven with 
a small input signal. The large currents produce electro-
magnetic fi elds which propagate into free space. The 
resonance on the antenna can also be seen as a stand-

ing wave. On a dipole antenna, the wave length of the 
standing wave is twice the length of the dipole. This de-
scribes the relation between the size of the antenna and 
the frequency of operation.

2. In the case of a microwave cavity fi lter, all three principles 
can be clearly observed. The fi lter has to have the appropri-
ate number of resonances in the pass band. The coupling 
impedances between the different cavity resonators have 
to be chosen appropriately, as predicted, in the ideal pro-
totype fi lter. The structure of pass- and stop bands is due 
to constructive and destructive interferences between the 
refl ected and transmitted waves of the different cavities.

As demonstrated above, the scattering parameters (S-param-
eters) and impedances represent important values to quantify 
the functioning principles mentioned above. They also can be 
used for a robust design optimization of RF components.

Examples

Optimization of a dual band antenna
A dual band antenna works at two frequency bands. In Fig. 
1, the geometry of a dual band slot antenna is shown. The 
return loss (see Fig. 2 top) of the initial design already had 
two resonances with one close to 2.4GHz and the other close 
to 5.8GHz. However, the fi rst value was not at the right posi-
tion and was very sharp. The second minima at -12dB shows 
a rather poor matching performance. To improve the design, 
an optimization using optiSLang was conducted. Afterwards, 
both minima were in the right position, well below -15dB 
(see Fig. 2 bottom) and also showed an extended bandwidth.
The production of printed antennas involves many uncertain-
ties concerning the electric material properties of substrates, 
like FR4 and, of course, there are tolerances in the process of 
fabricating a printed circuit board (PCB). A robustness analy-
sis of the design using optiSLang quantifi es the maximum 
allowed tolerances and provides a profound understanding 
useful for appropriate decision making concerning cost ver-
sus accuracy issues and material quality management.

Return loss optimization of a 2x2 antenna array
In cooperation with the Austrian antenna manufacturer 
PIDSO, a 2x2 antenna array was analyzed (Fig. 3), which is 
used for high-gain, line-of-sight data transmission towards 
moving objects (tracking). In order to track objects, the an-
tenna array was installed on a gimbal assembly. A four-port 
hybrid coupler was integrated for transforming four output 
signals into composite ones for signal transmission as well 
as differential ones for tracking. An incident wave that is 
received at an angle by the antenna array causes phase-
shifted signals at the patch antennas. Here, the hybrid cou-
pler should use constructive and destructive interference to 
generate sum and differential signals. The edge length of 
the hybrid coupler is approximately a quarter wave length. 
The S-matrix for the transmission behavior of the coupler 
from input to output ports has to satisfy the following rela-
tion describing the interference.

Fig. 1: Geometry of a dual band slot antenna Fig. 3: The antenna array is used for directional data transmission

Fig. 2: Return loss of initial design (top) and optimized design (bottom)
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To adapt the coupler to a given frequency, the geometry had to 
be parameterized. Due to the geometry’s symmetry, fi ve edge 
lengths, one angle as well as the position of the parallelogram 
in regard to the rectangles, were considered (Fig. 4). The fi eld 
simulation of the parameterized structure at the given fre-
quency was performed with ANSYS HFSS. The aim of the op-
timization using optiSLang was to minimize the mean square 
deviation between the real coupler S-matrix and the ideal one 
adapted by a corresponding multiplicative (complex) constant. 
Moreover, the return loss of the sum port should be less than 
-12dB. The sensitivity analysis using optiSLang revealed that 
six of the seven parameters have signifi cant infl uence on the 
two target parameters. An optimization applying an adaptive 
response surface method resulted in a suffi cient geometry af-

ter running an overnight computation. The plot (Fig. 5) of the 
output signals at the sum port as well as at the horizontal and 
vertical differential ports show the high optimization qual-
ity. The contours of horizontal and vertical differential signals 
form a rectangular coordinate system across a large angular 
range. It additionally indicates that the sum signal hardly de-
pends on the phase differences. Fig. 6 shows the electric fi eld 
strength distribution displaying that there is hardly any recep-
tion at the differential ports of the hybrid coupler if the waves 
arrive orthogonal at the antenna patches. A further step to-
wards the entire design of the antenna is the connection of 
the hybrid coupler to the antenna array via a microstrip line. 
For this purpose, a circuit simulation is conducted with ANSYS 
designer. Here, for example, the difference in length of the mi-
crostrip lines and the stub capacity for feed tuning of the patch 
antennas could be used as input parameters. Then, the gain 
plot of the antenna assembly can be simulated and optimized 
via the dynamic link between ANSYS designer and HFSS.

Finally, after reassembling the entire antenna, a fi eld simu-
lation had to be conducted (Fig. 7). The necessary geometry 
was derived from the result of the circuit simulation. By this 
approach, the design process was accelerated signifi cantly. 
In further steps, ANSYS combined with optiSLang also al-
lowed to analyze the robustness of designs exposed to oth-
er physical infl uences.

Author // Christian Römelsberger (CADFEM GmbH)

Contact PIDSO GmbH // Lastenstrasse 19, A-1230 Wien 
Tel. +43 (0) 1 25 24 189, www.pidso.com
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Fig. 4: The edges of the hybrid coupler are approx. one-quarter wavelength

Fig. 5: The contour plot indicates the high quality of the optimization

Fig. 6: The signals emitted from the antenna patches hardly reach the dif-

ferential ports

Fig. 7: Field simulation of the entirely assembled antenna
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Simulation of evacuations is an effi cient way to fi nd the best escape concepts and to increase the safety of 
buildings. The importance of different input parameters for the result is investigated by stochastic sensitivity 
analyses and evaluated by the Model of Optimal Prognosis (MOP).

SENSITIVITY ANALYSIS OF EVACUATION SIMULATIONS

CASE STUDY // PROCESS ENGINEERING

Introduction
Safe evacuation of persons from buildings in cases of fi re or 
other emergency situations is getting an increasing public 
attention. There are many sad examples in history where in-
adequate escape routes in the case of fi re have caused the 
death of many people. The “Iroquois Theatre Fire“ in Chicago 
with about 605 victims or the “Karlslust Dance Hall Fire” in 
Berlin with about 88 victims are only two examples. By eva-
cuation simulations it is possible to discover critical parts of 
escape concepts in order to optimize the safety of buildings. 

As evacuation simulation is a relatively young discipline, there is 
a strong need to develop knowledge and expertise on the sen-
sitivity of the results on statistic or deterministic variation of 
input parameters. The probability distributions of most input 
parameters are not suffi ciently known. To fi nd out for which of 
them it is worth to carry out detailed investigations and experi-
ments, probabilistic sensitivity studies are an effi cient method. 
Typical simulation times are very short, even for big models – 
for less than 1000 occupants often below one minute. From 
the cost point of view, this makes evacuation simulation an 
ideal application area for stochastic methods where high num-
bers of samples are needed to fi nd reliable results.

Evacuation simulation models are employed to simulate 
crowd movement in emergency situations. These models can 
be divided into four different groups: fl ow-based models, cel-
lular automata, agent-based and activity-based models.

The sensitivity study was carried out with Pathfi nder and 
optiSLang. Pathfi nder is an agent-based model that individ-
ualises the movement of groups. Every evacuee is defi ned 
by a set of attributes like for example walking speed, shoul-
der width or comfort distance.

Numerical Model of Evacuation

Input Parameters 
Whether an escape route is considered safe or not strong-
ly depends on the amount of people using it in case of an 
emergency. The capacity of every section of a path is lim-
ited by its length and width as well as by obstructions and 
restrictions (doors) along its way. The movement of the 
crowd depends on physical factors like the area occupied 
by the bodies and the density of the group. The behaviour 

of the crowd also depends on many other properties of the 
individuals in the group like, for example, prior knowledge, 
knowledge of the place and leadership behaviour.

Pathfi nder offers two modes of occupant movement: SFPE 
mode and steering mode. This study was made using the 
steering mode. The steering system in Pathfi nder moves oc-
cupants so that they roughly follow their current seek curve 
and can respond to a changing environment.

Geometry 
In Pathfi nder, fl oors are divided into an irregular triangu-
lar navigation mesh. The mesh can be divided in multiple 
rooms on multiple fl oors in 3D. Floors with different heights 
can be connected by stairs, ramps or elevators. Occupants 
can only move on the navigation mesh while obstacles, like 
furniture or closed interior rooms, are simply represented 
by holes in the navigation mesh. 

Solution Procedure 
The numerical solution to determine occupant movements 
is discretised in time and uses an explicit integration scheme. 
In each time step the following procedure is carried out:

1. Update targets: Determine the current target for each 
occupant, taking into account different exits and indi-
vidual properties and plan a path to reach the target.

2. Calculate the movement of occupants by explicit Euler 
integration, taking into account the current velocity of 
each occupant and individual acceleration to normal 
walking speed at start of the simulation and after pass-
ing obstacles.

3. Modify escape paths in order to account for other oc-
cupants who represent dynamic obstacles in their way 
and allow decisions for other exits and paths according 
to the local situation.

Path Generation
Escape paths along the navigation mesh are defi ned by a 
search algorithm along points on the edges of the mesh 
triangles. As there are often different paths on which a des-
tination can be reached, a decision needs to be made on 
the most appropriate one. The solution algorithm selects 
the “locally quickest” path to the fi nal destination. For this 
decision, it is assumed that the occupant knows about the 
doors in the local room and the queues at those doors as 
well as the distances to them. This evaluation is made by 
help of a weighted cost function of four steering behaviours 
(seek, separate, avoid walls and avoid occupants). Having 
determined the lowest cost direction, the maximum dis-
tance that should be travelled along this direction will be 
calculated. As the occupant moves, he has to account for 
dynamic obstacles like other occupants and, therefore, has 
to adjust his way by idling or seeking. Depending on the 
state and speed of the occupant, different sample direc-
tions are tested. 

Sensitivity Analysis
Three sensitivity studies were carried out, each with a differ-
ent objective:

1. Determine which of the parameters describing occupant 
properties are most important. For this purpose, a study 
with constant geometric parameters was made.

2. Investigate the infl uence of different geometric param-
eters. In this study, occupant properties are constant. 

3. Evaluate the importance of geometric parameters ver-
sus occupant properties. In this study, all input param-
eters are varied stochastically.

Input and output parameters
Input parameters are divided into two groups: occupant 
properties and room geometry (Table 1 and 2). 

Parameters in Table 1 are assumed to have a normal probabil-
ity distribution. Input parameters for the room geometry are 
shown in Table 2. They describe the width of the interior doors 
and emergency exits (see Fig. 1 next page). Parameters in Ta-
ble 2 are assumed to have a uniform probability distribution. 
The input parameters of the occupants vary in ranges that 
correspond to typical properties of healthy people. The maxi-
mum speed of an occupant, for example, varies in a range 

Input Parameter Unit min max

accelFactor s     0.50       1.10   

radius m     0.14       0.25   

maxVel m/s     0.36       1.58   

reacTime s     0.09       0.11   

minSqueezeFactor -     0.50       1.00   

persistTime s     0.50       1.50   

collisionResponseTime s     0.50       2.00   

comfortDist m     0.00       0.50   

slowFactor -     0.05       0.15   

localQueueTimeFactor -     0.80       1.00   

localTravelTimeFactor -     0.80       1.00   

tailTimeFactor -     0.80       1.00   

Input Parameter Unit min max

exit_west m     1.00       1.40   

exit_south m     1.00       1.40   

exit_east m     1.00       1.40   

door1 m     1.00       1.80   

door2 m     1.00       1.80   

door3 m     1.00       1.80   

Table 1: Input parameters for occupant properties

Table 2: Input parameters for room geometry
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that is typical for people who can move without mobility aids 
like crutches, walkers or wheel chairs. The input parameters 
for occupant properties are shown in Table 1. The most im-
portant ones are:

 • Radius: radius of the moving cylinder by which occupants 
are represented. Its range corresponds to the range of hu-
man shoulder width

 • Maximum velocity (maxVel): maximum velocity at which 
an occupant can move

 • Comfort distance (comfort_Dist): specifi es the desired 
distance one occupant will try to maintain with others 
nearby such as when waiting in queues

 • Collision Response Time: when multiplied by an occu-
pant’s current speed, this parameter controls the dis-
tance at which an occupant will start recording a cost for 
colliding with other occupants when steering,

 • Acceleration time (accel_Factor): specifi es the amount of 
time it takes for the occupant to reach maximum speed 
from rest or to reach rest from maximum speed.

The most important output parameter for evacuation simu-
lations is the time until the last evacuee has left the build-
ing. This evacuation time (maxTime) is measured in seconds. 
Other output parameters that evaluate the distribution of 
occupants to the different exits and the fl ow through the ex-
its could be important for a subsequent optimization based 
on the sensitivity results.

Room Geometry
The fi ctive room geometry was set up with the objective to 
provoke changes of the “locally quickest” path during the 
simulation. There are multiple ways with similar length to 
the exits. The building has a total area of 110 m² consisting 
of three rooms on one fl oor connected by three doors with 
one long corridor and 3 exits. 110 occupants were chosen 
for escape scenario. 

Sampling method
For all analyses, optiSLang’s Advanced Latin Hypercube 
Sampling was applied to generate 500 or 1000 stochastic 
samples. The results were evaluated after calculation of the 
Metamodel of Optimal Prognosis (MOP) that allows to as-
sess the quality of prognosis for the simulation model and 
is used to characterise the infl uence of each input param-
eter on each output parameter by evaluation of their ability 
to predict results. Simulation time for 500 samples was 35 
min on an offi ce PC with 4-core-CPU. 

Study 1: Sensitivity to Occupant Properties
In this study, only occupant properties were used as stochas-
tically varying input parameters. All geometric parameters 
of the building were held constant. The result shows that 
walking speed (maxVel) and outer dimensions (radius) of the 
occupants have highest infl uence on the evacuation time. 
Further, the acceleration time (accel_Factor) and the comfort 
distance (comfort_Dist) are important for the result. 

The graph in Fig. 2 shows the Coeffi cients of Prognosis 
(CoP). The CoPs are calculated with the MOP. This metamod-
el is based on the results of the sensitivity analysis and uses 
approximation algorithms to provide a response surface 
which is applied to evaluate the quality of prognoses that 
can be made with the simulation model. The results in Fig. 
2 read as follows: 54% of the variations in the results of 
the output parameter maxTime (evacuation time) can be 
explained by the variations of the input parameter maxVel 
(maximum velocity of an occupant). Input parameters with 
contribution of <1% are not displayed in this graph. The 
CoP is an appropriate measure to evaluate the quality of a 
model. Low CoP values are generally an indicator of an error 
in the model, for example, due to input errors committed 
by the user or in the simulation software. In this example, a 
high CoP of 96% was calculated. 

Study 2: Sensitivity to Geometric Parameters
In real projects, a typical task for evacuation simulations is, 
for example, to prove that replacement of existing doors 
against wider ones is not required because safe egress is 
possible without expensive modifi cations. In study 2 of the 
investigated example, the interior door 3 has the highest 
importance: 32% of the variation of the evacuation time can 
be explained by the variations of the width of this door. This 
result is interesting because this door is not an emergency 
exit and therefore not considered to have such high impor-
tance for the result. Because of the queue at door 2 many 
occupants decide to take the second rescue path through 
door 1 (Fig. 4). But instead of following the crowd to the 
exit west (green arrow) they decide to take the “shortcut” 
through door 3 to the exit east (blue dotted arrow). To avoid 
this bottle-neck situation, escape route signs at door 3 have 
to show to exit west and not to door 3.

Fig. 1: Room geometry (top) and initial distribution of occupants (bottom)

Fig. 2: Study 1 (only properties of occupants vary), Coeffi cients of Prognosis 

for evacuation time (maxTime)

Fig. 3: Study 1 (only properties of occupants vary), 3D response surface for 

evacuation time (MOP)

Fig. 4: Simulation sample of study 2, illustrating the importance of door 3

Fig. 5: Study 2 (only geometric parameters vary), Coeffi cients of Prognosis

Fig. 6: Study 2 (only geometric parameters vary), 3D response surface, door 3 

and exit east vs. evacuation time (MOP)

Fig. 7: Study 2: (only geometric parameters vary), 3D response surface, door 

2 and exit west vs. evacuation time (MOP)
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Study 3: Relationship of Sensitivities to Geo-
metric Parameters and Occupant Properties
In this study, both groups of input parameters – occupant 
properties and room geometry – are varied. As in study 1 and 
2, the probability distribution of geometric parameters is uni-
form, whereas the occupant properties follow a normal distri-
bution. An interesting result is that the occupant properties 
radius, maximum velocity and acceleration time are much 
more important for the evacuation time than the width of in-
terior doors and emergency exits in this example (Fig. 9).

Conclusions
By stochastic sensitivity analyses of evacuation simulations 
with an example building consisting of three connected 
rooms with 3 emergency exits it could be shown that: 
 • Only a few input parameters that describe occupant prop-

erties have signifi cant infl uence on the evacuation time, 
mainly the radius and the walking speed are important.

 • If both geometric and occupant parameters are varied, 
the variation of occupant parameters has bigger infl u-
ence on the variation of results.

The percentage of people who walk at reduced speed and 
also require more fl oor space is increasing due to the cur-
rent trend of an aging population. The results show that the 
presence of people with physical impairments who are using 
walking frames or other mobility aids among the evacuees 
would have a strong infl uence on the entire evacuation pro-
cess and not only on the total evacuation time.

The results can be applied to increase the reliability of simu-
lations by more precise determination of the most important 
input parameters. It is recommended to verify particularly 
the input data for occupant shoulder width, maximum walk-
ing speed and acceleration time. 

The results were produced by use of one arbitrary example 
for the basic geometry. Further investigations should be 
made to fi nd out if this result is valid on other geometries as 
well. Simulation-based optimization and robust design anal-
ysis can follow the sensitivity analyses to improve designs for 
evacuation.

Authors // Dr. Gerald Grewolls (SIMTEGO GmbH) /
Prof. Dr. Kathrin Grewolls (Ingenieurbüro für Brandschutz 
Grewolls) 
Source // www.dynardo.de/en/library

Fig. 8: Study 3 (Geometric Parameters and Occupant Properties vary), 3D re-

sponse surface for evacuation time (MOP)

Fig. 9: Study 3 (Geometric Parameters and Occupant Properties vary), Coef-

fi cients of Prognosis

Model-based condition monitoring with ANSYS and optiSLang enables an understanding of correlations between 
the properties of individual components and their effects on the behavior of a machine.

MODEL-BASED PARAMETER IDENTIFICATION: 
CAUSE AND EFFECT

CASE STUDY // MECHANICAL ENGINEERING

To assure acceptable machining tolerances and the quality 
of work pieces in the long run, it is necessary to monitor 
machine tools during the operating mode. Basically, there 
are three different strategies which can be categorized as 
“run to break”, “time-based preventive maintenance” and 
“condition-based maintenance”. The objective of the last 
approach is the permanent analysis of component proper-
ties during the period of operation. 

In most cases, condition monitoring is based on the analy-
sis of the vibration amplitudes measured by external accel-
eration sensors at various spots of the machine. This proj-
ect presents a new approach that determines the physical 
characteristics of individual machine components based on 
the analysis of the machine vibration and system model. 

The generation of an appropriate algorithm for the condi-
tion monitoring of a particular system requires a compre-
hensive knowledge of potential failure modes. In the case 
of a spindle nut drive, the abrasion of the runway is the 
most common problem. The erosion of the runway profi le 
impairs the tribological properties of the contact surface 
and, as a consequence, reduces the prestress between balls, 

nut and spindle. Furthermore, the loss of prestress reduces 
the total stiffness of the feed drive system causing a change 
of the system’s eigenfrequencies. Therefore, an analysis of 
the eigenfrequencies of the feed drive can lead to determi-
nation of the stiffness in different subcomponents.

Analysis using a simplifi ed model
During the SIOCS project “Simulation-based parameter 
identifi cation for online condition monitoring of a ball 
screw” at the ISW (Institute for Control Engineering of Ma-
chine Tools and Manufacturing Units) of Stuttgart Univer-
sity, calculations of the eigenfrequencies and the following 
analysis of the component stiffness were conducted by us-
ing a FE (Finite Element) model of a ball screw. In the fi rst 
phase, a simplifi ed 2-D FE model (Fig. 1, see next page) was 
developed with less than 50 degrees of freedom. The fi rst 
eigenfrequency corresponded to the axial vibration of the 
axis and the second one characterized the torsional vibra-
tion of the spindle. Besides the table mass and the motor 
inertia, the simplifi ed model also included the stiffness and 
damping parameters of nut, bearing and coupling. The cor-
relation between the stiffness values and the fi rst two cal-
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culated eigenfrequencies of the simplifi ed model was ana-
lyzed afterwards. To obtain the stiffness parameters based 
on the measured eigenfrequencies, an optimization process 
was performed using optiSLang. The objective function was 
defi ned based on the difference between measured and 
simulated eigenfrequencies. An extra analysis by means of 
neural network demonstrated that the correlation between 
inputs (eigenfrequencies) and output parameters (stiff-
ness) could be determined more robustly via optimization 
algorithms. 

The initial identifi cation of stiffness parameters indicated 
that, based on the measurement of only two eigenfrequen-
cies, no appropriate stiffness value for the nut could be iden-
tifi ed. In order to clarify the correlation, a sensitivity analysis 
of the model was performed using optiSLang inside ANSYS 
Workbench. During this sensitivity analysis, different stiff-
ness parameters, as well as the table mass and position, 
were considered. Furthermore, additional eigenfrequencies 
were analyzed for calibration of model parameter. The re-
sults indicated that neither the fi rst nor the second eigen-
frequency was considerably affected by the stiffness of the 
nut. An additional study was conducted to fi nd a physical 
vibrational parameter, which is affected by the nut stiffness 
parameter. The study outcome pointed out that the fi rst ei-
genmode (machine table movement) is mainly affected by 
the nut’s stiffness. The sensitivity analysis identifi ed three 
output parameters, which were decisive for the identifi ca-
tion of the stiffness parameters of the ball screw drive. Fig. 2 
shows the indication represented by optiSLang’s Coeffi cient 
of Prognosis (CoP) and Metamodel of Optimal Prognosis 
(MOP) as a result of the sensitivity analysis.

After the modifi cation of the objective function by adding 
the eigenmodes, as well as the implementation of the cor-
rectional factors, the identifi cation of the model param-

eters was conducted. An Evolutionary Algorithm (EA) was 
applied as a model-based identifi cation algorithm and the 
stiffness parameters could already be identifi ed after about 
200 iterations.

Accuracy of the algorithm
Fig. 3 illustrates how the proposed SIOCS approach was veri-
fi ed on the basis of the simulation input data. The simplifi ed 
2-D model of the ball screw was used to calculate the fre-
quency response of the rotational velocity control. Based on 
the curve fi tting in the Bode plot, the transfer function of the 
system could then be identifi ed. The eigenfrequencies and 
eigenvectors were calculated afterwards, using the generat-
ed algorithm. By providing the eigenfrequencies and eigen-
vectors as inputs of the identifi cation algorithm, the stiff-
ness parameters of the ball screw model were determined 
and the accuracy of the algorithm could be evaluated. 

Conclusion and benefi t
As a result of the project, the following conclusions can be 
drawn: The expected correlation between system parameters 
and characteristics of the machine could not be determined at 
the beginning of the project. Only the additional consideration 
of the system’s fi rst eigenmode, as well as the inclusion of a 
wider range of parameters and system responses identifi ed 

by the sensitivity analysis with optiS-
Lang, could explain the phenomena. 
The correlation matrix showed the in-
teraction between the model param-
eters and the machine performance. 
This approach enables an evaluation 
of the monitored component states 
by the identifi cation of their real vibra-
tion behavior. As a benefi t, this allows 
an optimal adjustment of operating 
time and maintenance intervals to the 
current condition of the machine tool.

Authors // Mahdi Mottahedi, M.Sc., 
(ISW, University of Stuttgart)
Dr.-Ing. Armin Lechler (Chief Engineer, 
ISW, University of Stuttgart)Fig. 1: Experimental set-up of a ball screw axis at the ISW and the corre-

sponding simplifi ed model

Fig. 2: CoP (left) and MOP (right) based on the sensitivity analysis in optiSLang

Fig. 3: Workfl ow of the stiffness parameter identifi cation of a ball screw drive system based on the calcu-

lated eigenfrequencies and the second eigenvector
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