

Symmetric Maneuver Loads Module Development & Integration within an Aircraft Tracking Environment

14 April 2015
Phoenix Integration Workshop
Marina del Rey, CA
Ned Lindsley, AFRL/QVC

Transition Success Story:

Components

Internal Loads

ynamic

seful

Remaining

Stick-to-Stress Real-time Simulator (StS-RtS) Applied to F-15C/D

U.S. AIR FORCE

Background

- Clearly established need for more accurate & rapid analysis tools to manage cracking in legacy aircraft
- Using aircraft past their design service life leads to:
 - Unexpected new cracking locations
 - Requirement for extensive re-analysis
 - More frequent inspections; Longer depot visits
 - Mishaps, Fleet groundings
- AFRL-VA-WP-TR-1999-3037: The overwhelming type of problem encountered w/ F-15 is Excessive Dynamic Load"

Objectives

- Deliver improved accuracy F-15C/D Simulator
- Provide SPO with engineering analysis for use in assessment of a known cracking problem
- Provide F-15 program with an improved tool for Crisis
 Management, Service Life Extension Programs & ASIP use

Transitions

- Small Non-Recurring Expense to build for each Fleet/Block
- Delivered F-15C/D StS-RtS to AFRL's ADT Spiral I Program
- Reduces risk for other platforms

Motivation

- USAF F-15C/D aircraft need to remain operational until 2025
- Lead the fleet aircraft have reached over 10,000 flight hours exceeds the 8,000 FH design life
- Air National Guard mishap in Nov 2007 grounded the fleet
- The fleet was eventually cleared for flight
- However, concern remains regarding risks as the fleet continues to age
- New technology is absolutely necessary for the continued economic operation of the fleet

Stick-to-Stress

- What is it?
 - A Physics Preserving, Real-time 6-DOF Simulation Tool for an Aeroelastic Vehicle, from Pilot Input to Global Airframe Stress
 - Includes Sensors, Control Surface Freeplay and Gust
- Why is it here?
 - Generate Comprehensive Representative Dynamic Stress Histories
- What else is it?
 - Prototype Development, Pilot Training, CLAW Evaluation
- Preserve Individuality, then apply Uncertainty Quantification

SOA vs. MODSDF-StS

SOA:

- Quasi-steady, empirical, stress-transfer functions (STF)
- Expensive to create, utilize and modify
- New "hot spots" only from field
 - Curve-fit the curve-fit, usage severity amplification factors

MODSDF-StS:

- Dynamic, physics-based global stresses
- Component Load comparison (dynamics included)
 - Quick comparison for original 16 (and re-fit) location STF
- ID global hot-spots using direct dynamic stress
- DADT FEM "cut-outs" of these global hot-spots

Mil-Spec Maneuvers

Symmetric Maneuvers

Abrupt Maneuvers (continued):

(c) By a control movement resulting in a ramp type displacement time curve as illustrated by the solid lines of the figure below. The duration of the maneuver and the control displacement $\,\delta\,$ will be just sufficient to attain the specified load factor coincidentally with the attainment of minus one-half $\,\delta\,$.

Mil-Spec Maneuvers

Unsymmetrical Maneuvers

Rolling Maneuvers

Component Loads

 Loads are calculated using equations involving reference data and recorded flight parameters

Component Loads

Component Loads

 Component loads are load summations at 'control' points which are usually the manufacturing splice points.

- Component loads can more easily be analytically derived.
- Component loads can be directly measured in the wind tunnel and in flight test.

Stress Transfer Functions

 Component Loads and Airframe States are used as "Curve Fitting" inputs for Stress Transfer Functions

$$(C_1 * L_1 + C_2 * L_2 + C_3) * C_4$$

L_n are Loads (forces or moments)

C_n are regression constants

Example: MSLUGL – Left main spar lower lug

$$mslug = (2.9856E - 7*iwbml - 9.8864E - 6*iwsl - 1.9911E - 5)*16.7E3$$
Left inner wing bending moment wing shear

Fatigue Life Testing

StS-RtS Process Overview

Detailed Mission-Vehicle-Pilot-Specific Dynamic Stress Histories for Fatigue, DADT & Fleet Management Purposes, all via Real-time Euler-based Simulation

For each Point in Flight Envelope ...

... Build ROMs and put in Simulator

Approach, 6-DOF Compatibility

• Incorporates the add-on incremental forces and moments, ΔF and ΔM , due to aeroelastic effects in the nonlinear flight simulation model.

$$m\left[\dot{V}_{b} + \Omega_{b} \times V_{b} - T_{be}g_{e}\right] = F_{ext} + \Delta F$$

$$I_{b}\dot{\Omega}_{b} + \Omega_{b} \times I_{b}\Omega_{b} = M_{ext} + \Delta M$$

- Adds the structural oscillation, X_s , at the sensor locations to the sensor reading of rigid body motion.
- Modifies the linear aeroelastic equations of motion as an aeroelastic solver to provide ΔF , ΔM , and X_s at each time step in the nonlinear flight simulation model.

Integration of Flight Dynamic Model and Nonlinear Aeroelastic Solver

MODSDF (Modular Six Degree of Freedom) Overview

- MODSDF predicts the trajectory and attitude of a vehicle in three dimensional space
 - A high fidelity, non-linear, stand-alone, simulation of vehicle motion that employs a fixed-step fourth-order Runge-Kutta integration scheme and six DOF algorithm
 - Structure allows project-specific analysis requirements to be incorporated while preserving the integrity and generic quality of its embedded methods

» For example: Named pipes

Typical uses in St. Louis

- Evaluations of Flight Control System Designs
- Time-Dependent Flying Qualities and Performance Characteristics
- Flight, Store, and Ground Loads
- Weapons Separation Characteristics
- Verification of Manned Simulator Models
- Reproduction of Flight Anomalies for Incident/Accident Investigations

MODSDF-StS "Impacts"

MODSDF Overview (StS)

Manufacturing

Splices and

Store Interfaces

MODSDF Software Library

Input Control Stick/Rudder Pedal Time History or Trajectory OR

"Canned" Maneuvers For Loads Analysis - 6 DOF Eqns of Motion

- · Steady or Abrupt Symmetric
- Rolling Pullouts
- +1g 360 Rolls
- -1g 180 Rolls
- Sideslips to Max

F-15 A/B/C/D or E Flight Control Systems Modeled

· CAS On / Off

Menu Driven Configuration Buildup

OWS (Overload Warning System)

Structural Loads Equations

- · Aircraft Components
- Store cog. Loads
- · Aircraft / Store Interface
- % Design Limit Loads

DYNAMIC Pressure on the Vehicle Surface (Cp)

Aircraft Trajectory Time Histories

*** DYNAMIC ***

Loads Time Histories

- A/C Components
- Store CG
- Store Interface
- OWS Data
- %DLL Data

MAX / MIN Search Data For All Loads Along Trajectory

MODSDF-StS to OFLCP & FDTS

ROM Flight Conditions

- α/β traces for maneuvers performed in MODSDF at Mach 0.95, 15kft
- Need an aeroelastic ROM at each α/β pair marked by a red diamond
- For APO/APU maneuvers only β=0 ROMs required
- APU 4g maneuver requires α=0, 2, 4, 6 ROMs, for example

Spectrum Development:

Current Process:

Direct calculation of stress spectrum for any fatigue critical location

Beyond Component Loads

Conclusions

- StS DFS essentially adds the incremental dynamic aeroelastic loads to the wind tunnel measured loads with or without static aeroelastic correction.
- StS DFS can be modified to import the flight recorded aircraft states for generating loads spectrums of individual fleet members.
- StS DFS can identify previously undefined high stress monitoring areas (hot spots).
- The loads spectrum generated by StS DFS can be used to perform ground fatigue tests or fatigue analysis to identify the residual fatigue life of aircrafts.

Demo

